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To describe the deformation and evolution of damage of glassy brittle materials, a kinetic model, which takes into account the 
transformation of elastic energy into surface energy, is proposed. The failure kinetics are characterized by a power dependence 
on the dynamic overload, which is equal to the difference between the rates of change of elastic and surface energies relative to 
the increase in damage of the medium. The model is applied to the problem of a plane failure wave in a half-space arising from 
the application of a normal load to the boundary. An approximate asymptotic solution is constructed by combining the two power 
series for the regions of slow and rapid change of the solution. As found in previous experiments, at moderate loads the values 
of the velocity and longitudinal stress in the regions of elasticity and the failed state of the material are the same. As the load 
increases, the distribution of these quantities become two-wave, the amplitude of the forerunner being greater than the elastic 
limit under uniaxial compression. In that ease the structure of the failure wave largely depends on the power index of the kinetic 
function in the neighbourhood of the static state. If the index is less than one, the kinetics exerts an influence only in a finite 
neighbourhood of the failure front. © 1998 Elsevier Science Ltd. All rights reserved. 

Experimental investigation [1-3] of the processes of dynamic failure of certain glasses has revealed 
various characteristic features of the plane compression waves. The most important of these include 
single-wave longitudinal stresses, two-wave transverse stresses, the initiation of failure waves at points 
on the boundary of the body or contact surfaces and the absence of damage at interior points of the 
body at high stress levels until the approach of the failure wave. 

These features cannot be modelled using the conventional description of a failure wave [4-6],~t which 
inevitably gives a two-front shock wave structure with an amplitude of the forerunner equal to the elastic 
limit of the material. 

When investigating the features of the deformation and failure of highly homogeneous brittle materials 
here, we have taken into account that the absence of damage at interior points of the body, even at a 
high level of stresses, before the failure wave approaches appears to be due to the initial lack of suf- 
ficiently large microdefects and the time that they take to form, which is longer than the transit time 
of acoustic waves through the body. Unlike the internal points of a body, its boundary, even a well- 
machined boundary, contains a large number of macroscopic cracks and acts as the geometric site of 
starting points for failure waves. Thus, the problem of the dynamic failure of highly-homogeneous brittle 
bodies reduces to investigating the distribution of a fragmentation wave through a pre-stressed elastic 
medium in which the stress level is governed both by the load on the boundary and by the internal 
properties of the fragmented material. 

Another important feature that we take into account is the need to interpret the experimental results 
on models with a finite failure kinetics. The problem with an instantaneous kinetics in which the damage 
changes simultaneously with the stresses is that typically the solution for wave propagation in an inelastic 
half-space under a dynamic load on the boundary is known to be non-unique. The conventional method 
of dealing with this problem in cases where the dependence of the stresses on the strains during loading 
is represented by a single curve with both elastic and inelastic parts is to require that the corrected 
solution must be continuous in relation to a small variation of the curve, and in particular to smoothing 
of the corner point corresponding to the transition from the elastic to the inelastic state. The situation 
here is different: after the approach of the fragmentation wave, the material changes from an elastic 
state in which the stress level bears no relation to the elastic limit to a state with a different relation 
between the stresses and strains. Non-uniqueness of the solution is not eliminated by varying these 
separate, unassociated curves. This is why kinetics must be used to regularize the solution. 

tPrikl. Mat. Mekh. Vol. 62, No. 4, pp. 70%714, 1998. 
$See also Nikolayevskii, V. N., Maximum velocity of the failure front and dynamic overload of brittle materials. Preprint No. 

123. Inst. Problem Mekh. Akad. Nauk SSSR, Moscow, 1979. 
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1. BASIC EQUATIONS 

In both its initial and its failed state, the material is assumed to be macroscopically homogeneous 
and initially isotropic, and thermal effects are assumed to be small. The strains, measured from the 
natural (unloaded and undamaged) state, are characterized by the symmetric tensor of small strains e, 
and the degree of damage (failure) of the material is characterized by the scalar parameter co. The 
quantities (e, co) characterize the state, the reaction of the material is given by the functions 

~r = qr(e, co), U = U(e ,  co) 

where o" is the symmetric stress tensor, U is the elastic potential of the damaged medium, defined by 
the expression [7, 8] 

pU(e, c o ) = ~ g i  t + laJ - otplnco - a.,Jco + 3tt0 + )~ [ko 2 (1.1) 

I n = e : l ,  / = ( e ' : e ' )  ~j, e ' - - - e - ~ l l l  

where p is the density of the material, K and I~ are the bulk compression and shear moduli, the parameters 
%, t~s > 0 characterize the decrease of accumulated elastic energy due to failure, T, 13 > 0 are charac- 
teristics of the effective surface energy of a unit mass of the failed material and e' is the stress tensor deviator. 

The stress tensor associated with the elastic potential o- = p~U/~ is given by the expression 

cr = (Ki t - otpco)l + (2~t - o~sco / J)e '  (1.2) 

The evolution of damage of the material is defined by the kinetic equation 

1 _ [  1 ~ U )  ~Az t, z>O 
, k > O  (1 .3 )  

where z > 0 is the characteristic time. 
Using expression (1.1), we can write the kinetic equation (1.3) in the form 

= '1:-I¢1~{[~ -I (0tpl I + 0t,J - T - [~CO)} (1.4) 

The choice of (1.4) as the law of change of the damageability can be justified as follows. 
In a slow process (co ---> 0), relation (1.4) yields the model of a damaged body with instantaneous 

kinetics [7, 8] based on local balance of the accumulated elastic and effective surface energies. 
The quantity --~U/~,  which is equal to the difference of the rates of change of the elastic and surface 

energies relative to the increase in damage, is a natural scalar measure of the "dynamic overload", 
applicable to different types of stress-strain state. 

The main qualitative features of diffuse failure, including, in particular, threshold values of the strains 
at which damage starts to accumulate, failure during both tension and shear, and the effects of dilatancy 
and internal friction, can be described by the single law (1.4). 

It is clear from Eq. (1.4) that if the kinetics of failure is taken into account, we obtain the model of 
a material with a long decaying memory of previous states, since with the given history of deformation 
the solution of (1.4) is a functional defined in e(~), ~ ~< t and which depends parametrically on t. 

2. FAILURE UNDER UNIAXIAL COMPRESSION 

We will apply the model to the uniaxial deformation of an initially unperturbed half-space xl t> 0 
which is damaged by the operation on the boundaryxl = 0 of a normal stress a n  = -p0H(t), where 
P0 = const > 0, H(t) is the Heaviside function. 

The system of equations in the unknowns (ol, o11, co), where D 1 is the velocity of a particle along the 
xl axis, can be written, using (1.2) and (1.4) in the form 

p~vl ~ n n = O  ' ~ l l  . Bun= ~co=x- i~(z )  (2.1) 
3t ax~ at ^0 ~ -ct~-~a'(z), ~-T 

- ~  ~ 0~2 O~Oii Afco ~ 
A 0 = K +  , Ot=Otl,-Ot s <0, A f = A 0 -  Y ,  Z = ~A 0 Ao 
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with zero initial data 

v j (x~, O) = ~, ~ (Xl, O) = co(xl, O) = O, 

and the boundary condition 

olj(O,t)=-po, t>~O 

It will be useful to introduce dimensionless variables 

xl ~ 0  (2.2) 

(2.3) 

~.= t ~ x i vj _t~ll ' ~ ,  = , v = ~ ,  ~ - - m  ~ = ~ ,  
to Coto Co A o  Ao 

A0 to 

where to is the characteristic time, co = (Ao/p) 1/2 is the velocity of longitudinal elastic waves, and the 
quantities ~ and a are related by the identity ~ +-b -2 = 1. 

In these dimensionless variables, system (2.1) can be written in the form 

6 - 3o / ~x = 0, x ( 6 -  ~v / 0x) = -~t~(z), "tcb = ~(z)  (2.4) 

z = a o - b 2 t o - g  

Here  and below the bar above dimensionless variables is omitted. 
System (2.4) is defined in the interval 0 <- x <- x.(t), where the unknown function x.(t) is found from 

the solution and gives the position of the failure wave front moving away from the boundaryx = 0. For 
x.(t) < x < t, the material is in an elastic intact state (to = 0) and its behaviour is described by the first 
two equations of system (2.4) with zero right-hand side 

~u° l~t -Oo° l~x=O, Ot~° l~ t -~u°  l~x=O. (2.5) 

The boundary and initial conditions (2.2) and (2.3) are written in the form 

t~(0, t)=-po,  t~>0; a°(x,O)=o°(x,O)=O, x ~ O  (2.6) 

To these we add the conditions for the solution to be matched on the fracture wave front 

a(x,t)=t~O(x,t), v(x,t)=vO(x,t), x=x.(t)  (2.7) 

For t >> x we will consider the approximate solution of  boundary-value problem (2.4)-(2.7) in the form 
of power series. Since (2.4) is a hyperbolic system with a small parameter in the highest derivatives and 
when x = 0 it is also a second-order hyperbolic system with the same number of boundary conditions but, 
unlike (2.4), allows solutions with discontinuities which differ from elastic shock waves, we shall construct 
a solution which is a combination of two series, as in [9]. The first, a power series in the small parameter 
6(x), will be used in regions in which the solution has low gradients and the second expansion in the small 
parameter A(x) will be used in the large gradient zone corresponding to the neighbourhood of a shock wave. 

Representing the solution vector w = (o, c, to) in the form of the power series 

W=Wo +WjS+w2~2+ .... 8=x Yt 

where k is the exponent of  the kinetic function (1.3), we find 

Z=Zo+ZlS+Z2~2+ .... zo=aoo-b2 t%-g ,  zi=aoi-b2toi,  i ~ l  

It follows from (2.4) that O(zo) = 0, that is z0 = 0. This means that, in the zero approximation, the 
solution is determined by equations of  a medium with instantaneous failure kinetics 

bo-OoolOx=O, Oo-b:OvolOx=O (2.8) 

In this approximation, the velocity of  the failure wave front is equal to b = (A//A0) 1/2, and its position 
is given by the equation x = bt. 
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Systems (2.5) and (2.8) with edge and boundary conditions (2.6), (2.7) have a one-parameter family 
of solutions with a strong discontinuity on the line x = bt. 

c i ° ( x , t ) = - u ° ( x , t ) = o . ,  b t ~ x ~ t  (2.9) 

o(x , t )  = -Po, u (x,t) = ((1 - b ) o .  + Po)/b,  O<~x<~bt 

where o. is the arbitrary amplitude of the elastic forerunner. 
In order to construct a rapidly-changing solution in the neighbourhood of the front x = bt, we introduce 

new independent variables to "extend" the solution in a direction perpendicular to the front 

= t, 11 = (x - bt)[A 

where A is a small parameter for which x = A TM. Since 

~t ~ A an' ~x a ~  

using the solution vector (u, z), where u is the displacement of the particle for which 

~u b2 3u au O = ~ - ,  ~ =  ~+az+a,, o~-a~x-Z-g 
system (2.4) can be written in the form of the two equations 

b ct xa "ta~b xb u~-2 u~-~z~=0; ~u~n-Tu.n-xz~+~z.=e~(z ) 

Using the expansions 

u = u ( ° ) A  + u°)A2+ . . . .  z = z(°)A + z(t)A2 +. . .  

and equating terms of the same order of smallness, we obtain the above relation for A(x) and a system 
of equations for the zero approximation which can be reduced to a non-linear parabolic equation in 
e = u~ °) 

= n=st--A-) >o. ( 2 1 0 )  

As A --, 0 the domain of definition of the solution (2.10) becomes {~ t> 0, - oo < rl ~< 0}. The initial 
condition for (2.10) is 

e(0,r l)=eo,  - * * < r l ~ 0 ,  eo =- (po+Olg) lb  2 (2.11) 

which follows from relations (2.9) and the formula o (°) = b2u~ ) + otg. 
On the right-hand boundary 11 = 0, the boundary condition can be written in the form 

e(~ ,0)=e . ,  ~>~0, e .=cxg / {b ( l -b ) }  (2.12) 

following from relations (2.9), the continuity of o and v on the line x = bt and the condition o (°) + t) ° 
= 0 in the region of the elastic state of the material. 

It is worth noting that the condition of continuity of stress and velocity on the front x = bt uniquely 
defines the amplitude of the elastic forerunner o. = be. = otg/(1 - b) and the jumps of the strain and 
damage on the failure wave front [e] = ag/b, [co] = g/b. 

The boundary condition as rl ~ - oo at the left-hand boundary, which expresses matching with the 
slowly changing solution (2.9), has the form 

e(~,q)=e o, ~ 0 ,  T1--~-*~ (2.13) 

Problem (2.10)-(2.13) is self-similar, since D = const, and boundary.conditions (2.11)--(2.13) are 
constant. 
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Making the substitution ~ = rll(n2/D~) n, n = k/(k + 1), we obtain the boundary-value problem 

e"(~)+(k+l)~(e'(~)) (2k-l)lk =0, - * o < ~ < O  (2.14) 

is 

e ( - * * )  = be  o, e(O)  = eo 

When k = 1 Eq. (2.14) is identical with the linear heat conduction equation, the solution of which 

+ z(O 2 
e(O=eo J (2.15) 

In the zero approximation the velocity and stress are given by the expression 

v(o)(~) = _beo ~ ~(o)(~) = -Po + ~(~) (2.16) 
-- b ' 

I fk  ~ 1 the general solution (2.14) has the form 

I k 2 - I  k 
e(~)=C2+ (Cl+qx2)'ndx, q= , m= 

o 2k l - k  

When k < 1, the quantity q < 0 and it follows from the necessary condition for a solution to exist 
e' ---- (C1 -I- q~2)m > O, that the change in the solution between e(O) and e(-  oo) must occur in the finite 
interval [Co, 0], ~ < O. Provided that the matching is smooth (de/d~[~ = 0), a solution which satisfies 
boundary conditions (2.12) and (2.13) can be written in the form 

a, Co) 
e(~)= -~" - ("o +o.)l(b~l(1) (2.17) 

. ~  -~ I 1(2re+l) 
po+O. [ , k 

l(z)=~ (I-z2)'ndz, Co = q Im b21(1) j m= >0 
0 I 1 - k  

In that case, the velocity and stress are given by the relations 

• / (U =--o, -(,to +a,) 'r(r" / r'°) 
v (o)(i~) = -O, + (Po + 0,) bl( l i  ' /(l---S- (2.18) 

In the case when k > 1, the quantities q > 0, m = kl(1 - k) < -1 and it follows from the condition 
for a solution to exist e'(~) > 0 that C~ > 0, since otherwise the integral in the general solution of Eq. 
(2.14) will diverge as ~2 ._~ -C1/q. Since the general solution is bounded for CI > 0, the change in the 
solution occurs in the interval - ~ < ~ ~< 0. Taking into account the boundary conditions (2.12) and 
(2.13), we obtain 

e(~) = b - (Po + o,  ) J(-~ b2.1(**). I ~, ) (2.19) 

{ , },.2.+,) 
J(z)=J" (l + z:' )" dz, ~, = q.b2j(**)(po+Oo) 

0 

The relations o(°)(Q and a(°)(Q are given in this case by formulae (2.18) in which I(z) must be replaced 
byJ(z). 

3. DISCUSSION 

The following typical features of the behaviour of brittle highly-homogeneous materials during uniaxial 
dynamic compression are described by the proposed failure model. Under loading. .P0 <. ay ,  where 
cf = A07/a < 0 is the threshold value of the compressive stress, the material remams m an intact elastic 
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state throughout. The pressurep0 on the boundary lies in the range a. -P0 < af, a.  = (1 + b)~f, the 
approximate asymptotic solutions for the longitudinal stress and velocity are in the form of a rectangular 
step 

Oll(Xl,t)=--po, Ut(Xl , t )=poIpc  o, t>0 ,  0<X I<c0t 

with identical amplitude in the region of elasticity bcot <~ xl <~ cot and the region 0 < xl < bcot of the 
failed state of the material. Unlike C~n(Xl, t) and ol(xl, t), the profiles of transverse stress a22, longitudinal 
strain en(xl, t) and damage cO(Xl, t) have two-wave configurations, such that 

ell = - p o / A o ,  a22 =keil, to=0, bcot<X l<~cot 

elt = - ( p o + o r l l ~ ) l A  l ,  1~22 = (~,--O~/[~)ell + { ~ / 1  ~ 

co=et(ell-vltz)l~, O<~xl <~bcot 

where ~ = ~Xp + %1q6, and the remaining notation was introduced above. 
The single-wave profile au(xl, t) is due to the fact that any solution of the form 

f a .  = c o n s t ,  bcot <~ x I ~ Cot 
(~ll(Xl,t) J 

I - P o ,  O ~  x I <~ bcot 

with an amplitude of the elastic forerunner a.  ~ -P0 that is acceptable in the approximation of instan- 
taneous kinetics, is asymptotically unstable in a finite failure kinetics. In fact, if the slowly-changing 
solution has a discontinuity, it is necessary to use a solution with "extended" space variable rl = 
(Z - bcot)/A in the neighbourhood of that discontinuity. The existence of such a solution requires a definite 
elastic forerunner amplitude a. = (1 + b)af and the inequality e' I> 0. Since these conditions are mutually 
exclusive, for I all < P0 < (1 + b)[ af[ the only possible solution has a forerunner or. ~ -P0, and so the 
profile all has a single-wave configuration. 

For loads applied to the boundary exceeding (1 + b)t~f, the asymptotic profile c~11(Xl, t) and ol(xl, t) 
have a two-wave configuration. In that case, the forerunner amplitude is unchanged and equal to a.  
for any pressure P0 on the boundary. Whatever the form of the boundary conditions at Xl = 0, the 
structure of the "smoothed" front is determined by the exponent k of the expansion of the kinetic 
function @(z) in the neighbourhood of zero, where z = ( ~ l l / ( ~ A 0 )  - bZo~ - "lIB is the dynamic overload 
of the material. For k t> 1 the fracture kinetics have an effect throughout the region occupied by the 
damaged material, whereas for k < 1 the kinetics is only important in a finite neighbourhood of the 
failure front. This is illustrated by Fig. 1, which shows the dependence of the stress all on the coordinate 
rl for b = 0.3 for different k. 

As in the case of small loads, the quantities eu, a22, co have a discontinuity on the failure wave front, 
changing smoothly after the front to values corresponding to the equilibrium state. This is illustrated 
in Fig. 2 by the load trajectories in the plane all - eu depicted by curves l(p0 < (1 + b)[ trfl and 
2(po > (I + b)[ a:l. 
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p•z; 
7÷h 

~'~ 
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, / - - q  
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z /÷~ /÷t,÷[wn] c,/t'~}~n; 

Fig. 1. Fig. 2. 
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The velocity of particles on the failure wave front is independent of the stresses on the boundary 
and is equal to (1 + b) I crf I/(pc0), depending only on the quasi-static properties of the material. It is 
clear from formulae (2.15) and (2.18) that the lines of constant values of the velocity and stresses in 
the neighbourhood of the failure front are defined by the equationx - bcot = Mt k/(l+k), M = const. Thus, 
instead of being straight lines parallel to the front, they deviate from it, because the large gradient zone 
expands over time. Defining the effective width of the failure wave as 

Ax = ~ (P0  +(1 + b)cr[)maxl~)t~ll I~x  I I, 
Xl 

we see that when k = 1 the wave width behaves as t 1/2 and is independent of the intensity of  the applied 
load. For k ~ 1 the increase in width ~(g+l) with a coefficient which depends on the acting boundary 
pressure as well as the parameters of the material, 

I wish to thank G. I. Kanel' for discussing the problem. 
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R E F E R E N C E S  

1. BRAR, N. S., BLESS, S. J. and ROSENBERG, Z., Impact-induced failure waves in glass bars and plates. Appl. Phys. Lett., 
1991, 59, 26, 3396-3398. 

2. KANEL', G. I., RASORENOV, S. V. and FORTOV, V. E., The failure waves and spaUations in homogeneous brittle materials. 
In SCHMIDT, S. C. et al., Shock Compression of Condensed Matter, Elsevier, Amsterdam, 1991, 451--454. 

3. KANEL', G. I., RASORENOV, S. V., UTKIN, A. V. and FORTOV, V. Ye., Shock-wave Effects in Condensed Media. Yanus- 
K, Moscow, 1996. 

4. GRIGORYAN, S. S., Some problems of the mathematical theory of deformation and fracture of hard rocks. Pr/k/. Mat. Mekh., 
1967, 31, 4, 643--669. 

5. SLEPYAN, L. I., Models in the theory of brittle fracture waves, lzv. Akad~ Nauk SSSR. MTT, 1977, 1,181-186. 
6. CHEREPANOV, G. P., The Mechanics of Brittle Fracture. Nauka, Moscow, 1974. 
7. KONDAUROV, V. 1., Continual fracture of non-linearly elastic bodies. Pr/k/. Mat. Mekh., 1988, 52, 2, 302-310. 
8. KONDAUROV, V. N. and NIKITIN, L. V., Theoretical Foundations of the Rheology of Geological Materials. Nauka, Moscow, 

1990. 
9. KUKUDZHANOV, V. N., The Propagation of Elastoplastic Waves in a Rod Allowing for the Influence of the Rate of Deformation. 

Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1967. 
Translated by R.L. 


